ON THE NORM OF A COMPOSITION OPERATOR WITH LINEAR FRACTIONAL SYMBOL

CHRISTOPHER HAMMOND

ABSTRACT. For any analytic map $\varphi:\mathbb{D}\to\mathbb{D}$, the composition operator C_{φ} is bounded on the Hardy space H^2 , but there is no known procedure for precisely computing its norm. This paper considers the situation where φ is a linear fractional map. We determine the conditions under which $\|C_{\varphi}\|$ is given by the action of either C_{φ} or C_{φ}^* on the normalized reproducing kernel functions of H^2 . We also introduce a new set of conditions on φ under which we can calculate $\|C_{\varphi}\|$; moreover, we identify the elements of H^2 on which such an operator C_{φ} attains its norm. Several specific examples are provided.

1. Introduction

For $1 \le p < \infty$, the Hardy space H^p is the collection of all analytic functions f on $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ with

$$||f||_p^p = \sup_{0 < r < 1} \int_0^{2\pi} \left| f\left(re^{i\theta}\right) \right|^p \frac{d\theta}{2\pi} < \infty.$$

Under this norm, H^p is a Banach space for all such p and a Hilbert space for p=2. For any analytic map $\varphi: \mathbb{D} \to \mathbb{D}$, the composition operator C_{φ} on H^p is defined by the rule

$$C_{\varphi}(f) = f \circ \varphi.$$

Every composition operator is bounded, with

(1.1)
$$\left(\frac{1}{1 - |\varphi(0)|^2}\right)^{1/p} \le ||C_{\varphi}: H^p \to H^p|| \le \left(\frac{1 + |\varphi(0)|}{1 - |\varphi(0)|}\right)^{1/p}.$$

These inequalities are sharp; for any value of $\varphi(0)$, there are particular examples of φ for which $||C_{\varphi}||$ equals the upper bound and examples for which $||C_{\varphi}||$ equals the lower bound. In general, though, there is no known procedure for precisely

1

²⁰⁰⁰ Mathematics Subject Classification. 47B33.

This paper is part of the author's doctoral thesis, written at the University of Virginia under the direction of Barbara D. MacCluer.

computing the norm of C_{φ} . We see from expression (1.1) that $||C_{\varphi}|| = 1$ whenever $\varphi(0) = 0$. There are only a few other cases where we can determine the norm exactly; for example

- (1) φ is inner; that is, $\lim_{r\uparrow 1} |\varphi(re^{i\theta})| = 1$ for almost all θ in $[0, 2\pi)$,
- (2) $\varphi(z) = az + b \text{ where } |a| + |b| \le 1,$
- (3) $\varphi(z) = \frac{(r+s)z + (1-s)}{r(1-s)z + (1+sr)}$ where 0 < s < 1 and $0 \le r \le 1$.

These results appear in [12], [6], and [7] respectively. Cowen and MacCluer [8] provide a comprehensive treatment of this material, as well as a thorough overview of results relating to composition operators.

A straightforward argument involving Blaschke products shows that the following norm relationship holds for all $p \ge 1$:

$$\|C_{\varphi}: H^p \to H^p\|^p = \|C_{\varphi}: H^2 \to H^2\|^2$$
.

Therefore it suffices to focus our attention on the Hilbert space H^2 . When studying this space, it is often helpful to consider the reproducing kernel functions $\{K_w\}_{w\in\mathbb{D}}$, defined by the property that $\langle f, K_w \rangle = f(w)$ for all f in H^2 . These functions have the form $K_w(z) = (1 - \overline{w}z)^{-1}$; hence

$$\|K_w\|_2 = \sqrt{\langle K_w, K_w \rangle} = \sqrt{K_w(w)} = \sqrt{\frac{1}{1 - |w|^2}}.$$

Throughout this paper, we write k_w to denote the normalized kernel function

$$k_w(z) = \frac{K_w(z)}{\|K_w\|_2} = \frac{\sqrt{1 - |w|^2}}{1 - \overline{w}z}.$$

For a subset W of \mathbb{D} , let \mathcal{K}_W denote the closed linear span of the kernel functions $\{K_w\}_{w\in W}$. Observe that the orthogonal complement \mathcal{K}_W^{\perp} is precisely the set of all functions in H^2 that vanish on W.

The kernel functions provide a valuable tool for the study of composition operators, in part because of the property that $C_{\varphi}^*(K_w) = K_{\varphi(w)}$ for any adjoint C_{φ}^* . Several authors have explored the connection between the kernel functions and the norm of C_{φ} . In the cases where we know $\|C_{\varphi}\|$, the norm is given by the action of the operator on the set of normalized kernel functions. This situation, however, is not true in general, a fact first proved by Appel, Bourdon, and Thrall [1].

The main results of this paper pertain to the situation where $\varphi : \mathbb{D} \to \mathbb{D}$ is a linear fractional map. In this case, we determine the conditions under which $\|C_{\varphi}\|$ is given by the action of either C_{φ} or C_{φ}^* on the normalized reproducing kernel functions (Theorem 4.4). We also introduce a new set of conditions on φ under which, at least in principle, we can calculate $\|C_{\varphi}\|$ (Theorem 5.5). For such φ , we identify the elements of H^2 on which C_{φ} attains its norm, each of which is a finite linear combination of kernel functions.

2. Preliminaries

Let T be a bounded operator on a Hilbert space \mathcal{H} . One reasonable strategy for determining ||T|| is to investigate the spectrum of the operator T^*T . Since T^*T is self-adjoint, its spectral radius equals $||T^*T|| = ||T||^2$. The following observation underscores the connection between the spectrum of T^*T and the norm of T.

Proposition 2.1. Let h be an element of \mathcal{H} ; then ||T(h)|| = ||T|| ||h|| if and only if $(T^*T)(h) = ||T||^2 h$.

This proposition can be proved with a straightforward Hilbert space argument, or can be deduced from other well-known results (e.g. [10], p. 92). Whenever $||T(h)|| = ||T|| \, ||h||$ for $h \neq 0$, we say that the operator T attains its norm on the element h.

Let $\|\cdot\|_e$, $r(\cdot)$, and $r_e(\cdot)$ denote respectively the essential norm, the spectral radius, and the essential spectral radius of an operator. Here the adjective *essential* signifies that a particular quantity is taken with respect to the Calkin algebra. In light of Proposition 2.1, our next observation follows easily.

Proposition 2.2. If $||T||_e < ||T||$, then T attains its norm on an element of \mathcal{H} .

Proof. Consider the positive operator T^*T ; observe that

$$r_e(T^*T) = ||T^*T||_e = ||T||_e^2 < ||T||^2 = ||T^*T|| = r(T^*T).$$

Therefore the largest element of the spectrum of T^*T does not belong to the essential spectrum, meaning that it is an eigenvalue of finite multiplicity. Consequently T^*T has an eigenvector corresponding to $||T||^2$, on which the operator T attains its norm.

It is helpful to remember Proposition 2.2 when studying composition operators, especially since we have a formula (due to Joel Shapiro [15]) for the essential norm of C_{φ} on H^2 . As it happens, in cases (1) and (3) where we know $\|C_{\varphi}\|$, the operators have the property that $\|C_{\varphi}\|_e = \|C_{\varphi}\|$, a condition sometimes called extremal noncompactness.

The remaining results in this section are specific to composition operators on the Hardy space H^2 .

Proposition 2.3. Suppose that the operator $C_{\varphi}: H^2 \to H^2$ attains its norm on an element g of H^2 . If φ is not an inner function, then g cannot vanish at any point of \mathbb{D} .

Proof. Suppose that g(w) = 0 for some w in \mathbb{D} . Then the function

$$\widetilde{g}(z) = \frac{g(z)}{b_w(z)} = \frac{g(z)}{\frac{w-z}{1-\overline{w}z}}$$

belongs to H^2 , with $\|\widetilde{g}\|_2 = \|g\|_2$. Since φ is not an inner function, neither is the composition $b_w \circ \varphi$. Therefore

$$\lim_{r\uparrow 1}\left|\frac{g\left(\varphi\left(re^{i\theta}\right)\right)}{b_{w}\left(\varphi\left(re^{i\theta}\right)\right)}\right|>\lim_{r\uparrow 1}\left|g\left(\varphi\left(re^{i\theta}\right)\right)\right|$$

for θ in a set of positive measure. Hence $\|C_{\varphi}(\widetilde{g})\|_{2} > \|C_{\varphi}(g)\|_{2}$, contradicting our choice of g.

Corollary 2.4. Suppose that φ is not inner; if g_1 and g_2 are functions on which C_{φ} attains its norm, then one is a scalar multiple of the other.

Proof. Both g_1 and g_2 are eigenfunctions for $C_{\varphi}^*C_{\varphi}: H^2 \to H^2$ corresponding to the eigenvalue $\|C_{\varphi}\|^2$; moreover, $g_1(0)$ and $g_2(0)$ are both nonzero. If $g_1 - (g_1(0)/g_2(0)) g_2$ were not identically 0, then it would be an eigenfunction corresponding to $\|C_{\varphi}\|^2$, in other words a function on which C_{φ} attains its norm, that vanishes at 0. Therefore $g_1 = (g_1(0)/g_2(0)) g_2$, as we had hoped to show.

We end this section with a straightforward, but remarkably useful observation. Let λ be an eigenvalue for $C_{\varphi}^*C_{\varphi}$ with a corresponding eigenfunction g; since C_{φ} fixes the constant function $K_0(z) = 1$, we see that

(2.1)
$$g(\varphi(0)) = \langle C_{\varphi}(g), K_{0} \rangle = \langle C_{\varphi}(g), C_{\varphi}(K_{0}) \rangle$$
$$= \langle \left(C_{\varphi}^{*} C_{\varphi} \right) (g), K_{0} \rangle = \lambda \langle g, K_{0} \rangle = \lambda g(0).$$

In particular, this result holds for $\lambda = \|C_{\varphi}\|^2$ if C_{φ} attains its norm on g.

3. The operator $C_{\varphi}^* C_{\varphi}$

Let

$$\varphi(z) = \frac{az+b}{cz+d}$$

be a nonconstant linear fractional self-map of \mathbb{D} . Cowen [6] proved that the adjoint operator C_{φ}^* may be written $T_{\gamma}C_{\sigma}T_{\eta}^*$, with

(3.1)
$$\sigma(z) = \frac{\overline{a}z - \overline{c}}{-\overline{b}z + \overline{d}},$$

$$\gamma(z) = \frac{1}{-\overline{b}z + \overline{d}},$$

$$\eta(z) = cz + d,$$

where T_{γ} and T_{η} denote the corresponding Toeplitz operators. Hence $\left(C_{\varphi}^{*}C_{\varphi}\right)(f) = \left(T_{\gamma}C_{\sigma}T_{\eta}^{*}C_{\varphi}\right)(f)$ for any f in H^{2} . Recalling that T_{z}^{*} is the backward shift on H^{2} , we see that

$$((C_{\varphi}^* C_{\varphi}) f)(z) = \gamma(z) \left(\overline{c} \left(\frac{f(\varphi(\sigma(z))) - f(\varphi(0))}{\sigma(z)} \right) + \overline{d} f(\varphi(\sigma(z))) \right)$$

$$= \frac{\overline{c}}{\overline{a}z - \overline{c}} \left[f(\varphi(\sigma(z))) - f(\varphi(0)) \right] + \frac{\overline{d}}{-\overline{b}z + \overline{d}} f(\varphi(\sigma(z)))$$
(3.2)

for all z in \mathbb{D} not equal to $\sigma^{-1}(0) = \frac{\bar{c}}{\bar{a}}$. We rewrite this expression simply as

(3.3)
$$\left(\left(C_{\wp}^* C_{\varphi} \right) f \right)(z) = \psi(z) f(\tau(z)) + \chi(z) f(\varphi(0)),$$

where τ denotes the composition $\varphi \circ \sigma$ and

$$\psi(z) = \frac{\left(\overline{a}\overline{d} - \overline{b}\overline{c}\right)z}{\left(\overline{a}z - \overline{c}\right)\left(-\overline{b}z + \overline{d}\right)} \text{ and } \chi(z) = \frac{\overline{c}}{-\overline{a}z + \overline{c}}.$$

Equation (3.3) holds for all points except $z=\sigma^{-1}(0)$, which only belongs to \mathbb{D} if |c|<|a|. Having such a concrete representation for $C_{\varphi}^*C_{\varphi}$ makes it easier to investigate its spectrum.

4. The quantities S_{φ} and S_{φ}^*

Let φ be an analytic self-map of \mathbb{D} . Bourdon and Retsek [4] defined the quantities

$$S_{\varphi} = \sup_{w \in \mathbb{D}} \left\{ \frac{\left\| C_{\varphi}(K_w) \right\|_2}{\left\| K_w \right\|_2} \right\} = \sup_{w \in \mathbb{D}} \left\{ \left\| C_{\varphi}(k_w) \right\|_2 \right\}$$

and

$$S_{\varphi}^* = \sup_{w \in \mathbb{D}} \left\{ \frac{\left\| C_{\varphi}^*(K_w) \right\|_2}{\left\| K_w \right\|_2} \right\} = \sup_{w \in \mathbb{D}} \left\{ \left\| C_{\varphi}^*(k_w) \right\|_2 \right\}.$$

Among other results, they proved that $S_{\varphi}^* \leq S_{\varphi}$ for all φ and that $S_{\varphi}^* = S_{\varphi} = ||C_{\varphi}||$ whenever $\varphi(0) = 0$ or φ has the form $\varphi(z) = az + b$; moreover, when $\varphi(0) \neq 0$ and $\varphi(z) \neq az + b$, they showed that S_{φ}^* cannot equal $||C_{\varphi}||$ unless $||C_{\varphi}||_e = ||C_{\varphi}||$. The quantities S_{φ} and S_{φ}^* were also studied, with different notation, by Avramidou and Jafari [2]. In this section, we determine the conditions under which either $S_{\varphi} = ||C_{\varphi}||$ or $S_{\varphi}^* = ||C_{\varphi}||$ when $\varphi : \mathbb{D} \to \mathbb{D}$ is a linear fractional map.

We begin with a few observations which hold for any analytic $\varphi : \mathbb{D} \to \mathbb{D}$. If $\{w_j\}$ is a sequence of points converging to w in \mathbb{D} , then the normalized kernel functions $\{k_{w_j}\}$ converge to k_w in the norm of H^2 . Therefore, since C_{φ} is a bounded operator, either $S_{\varphi} = \|C_{\varphi}(k_w)\|_2$ for a particular w in \mathbb{D} or $S_{\varphi} = \limsup_{|w| \uparrow 1} \|C_{\varphi}(k_w)\|_2$. The analogous result holds for S_{φ}^* . Cima and Matheson [5] observed that

$$\|C_{\varphi}\|_{e} = \limsup_{|w| \uparrow 1} \|C_{\varphi}(k_{w})\|_{2},$$

a fact which follows from the proof of Shapiro's essential norm formula [15]. In the case where φ is univalent, Shapiro's formula may be expressed

$$\|C_{\varphi}\|_{e} = \limsup_{|w| \uparrow 1} \sqrt{\frac{1 - |w|^{2}}{1 - |\varphi(w)|^{2}}} = \limsup_{|w| \uparrow 1} \|C_{\varphi}^{*}(k_{w})\|_{2}.$$

Therefore $S_{\varphi} \geq \|C_{\varphi}\|_e$ for any φ and $S_{\varphi}^* \geq \|C_{\varphi}\|_e$ whenever φ is univalent.

Before proving our results for linear fractional φ , we need the following pair of general lemmas. The first, which pertains to the lower bound in expression (1.1), appears with a different proof in a current paper of David Pakorny and Jonathan Shapiro [13].

Lemma 4.1. If $\varphi : \mathbb{D} \to \mathbb{D}$ is a nonconstant analytic map with $\varphi(0) \neq 0$, then

$$||C_{\varphi}|| > \sqrt{\frac{1}{1 - |\varphi(0)|^2}}.$$

Proof. The Hardy space H^2 has the property that $|f(0)| < ||f||_2$ for any nonconstant element f. Observe that the function $k_{\varphi(0)} \circ \varphi$ is nonconstant; therefore

$$\|C_{\varphi}\| \ge \|C_{\varphi}(k_{\varphi(0)})\|_{2} > |(k_{\varphi(0)} \circ \varphi)(0)| = \sqrt{\frac{1}{1 - |\varphi(0)|^{2}}},$$

as we had hoped to show.

Lemma 4.2. Suppose that $\varphi : \mathbb{D} \to \mathbb{D}$ is a nonconstant analytic map with $\varphi(0) \neq 0$. If the operator C_{φ} attains its norm on a normalized kernel function k_w , then $|w| > |\varphi(0)|$.

Proof. Suppose that C_{φ} attains its norm on k_w ; then K_w is an eigenfunction for $C_{\varphi}^* C_{\varphi}$ corresponding to $\|C_{\varphi}\|^2$. Appealing to equation (2.1), we see that

$$\frac{1}{1 - \overline{w}\varphi(0)} = K_w(\varphi(0)) = \|C_{\varphi}\|^2 K_w(0) = \|C_{\varphi}\|^2.$$

It follows from Lemma 4.1 that

$$\frac{1}{1 - \overline{w}\varphi(0)} > \frac{1}{1 - |\varphi(0)|^2},$$

meaning that $|w| > |\varphi(0)|$.

Now we turn our attention to the situation where φ is a linear fractional map.

Proposition 4.3. Let $\varphi : \mathbb{D} \to \mathbb{D}$ be a linear fractional map with $\varphi(0) \neq 0$ and which does not have the form $\varphi(z) = az + b$. For any point w in \mathbb{D} ,

$$||C_{\varphi}|| > ||C_{\varphi}(k_w)||_2.$$

Proof. Suppose, to the contrary, that C_{φ} attains its norm on some normalized kernel function k_w ; then K_w is an eigenfunction for $C_{\varphi}^*C_{\varphi}$. Hence the subspace $\mathcal{K}_{\{w\}} = \{\alpha K_w : \alpha \in \mathbb{C}\}$ is invariant under $C_{\varphi}^*C_{\varphi}$. Since $C_{\varphi}^*C_{\varphi}$ is self-adjoint, the orthogonal complement $\mathcal{K}_{\{w\}}^{\perp} = \{f \in H^2 : f(w) = 0\}$ is also invariant under the operator; this observation will give rise to a contradiction. Lemma 4.2 tells us that w cannot equal 0 or $\varphi(0)$. Suppose then that w is the problematic point $\sigma^{-1}(0) = \frac{\overline{c}}{\overline{a}}$. Applying L'Hôpital's rule to expression (3.2), we obtain

$$\left(C_{\varphi}^* C_{\varphi}(f)\right)(\sigma^{-1}(0)) = \frac{\overline{c}}{\overline{a}} f'(\varphi(0)) \tau'(\sigma^{-1}(0)) + \frac{\overline{ad}}{\overline{ad} - \overline{bc}} f(\varphi(0)),$$

which must equal 0 for any f in $\mathcal{K}_{\{w\}}^{\perp}$. Consider the function $f_1(z) = (z - \varphi(0))(z - w)$ in $\mathcal{K}_{\{w\}}^{\perp}$. The assumption that $\varphi(z) \neq az + b$ guarantees that $c \neq 0$; since

 $f_1(\varphi(0)) = 0$ and $\tau = \varphi \circ \sigma$ is univalent, the term $f'_1(\varphi(0))$ must equal 0, which is not the case. Therefore w cannot equal $\sigma^{-1}(0)$. Hence equation (3.3) is valid at w, meaning that

$$0 = \left(C_{\varphi}^* C_{\varphi}(f)\right)(w) = \psi(w)f(\tau(w)) + \chi(w)f(\varphi(0))$$

for all f in $\mathcal{K}_{\{w\}}^{\perp}$. Again consider the function f_1 . Observe that $f_1(\varphi(0)) = 0$; since $w \neq 0$, the term $\psi(w)$ is nonzero. Hence $f_1(\tau(w)) = 0$, meaning that $\tau(w)$ equals either w or $\varphi(0)$. If $\tau(w) = \varphi(0)$, then $w = \sigma^{-1}(0)$, which is not the case; therefore $\tau(w) = w$. Now take $f_2(z) = z - w$ in $\mathcal{K}_{\{w\}}^{\perp}$. Since $f_2(\tau(w)) = f_2(w) = 0$ and $\chi(w) = \frac{\overline{c}}{\overline{c} - \overline{a}w} \neq 0$, we see that $f_2(\varphi(0)) = 0$. Therefore $\varphi(0)$ must equal w, which is a contradiction.

We now state main result of this section:

Theorem 4.4. Let $\varphi : \mathbb{D} \to \mathbb{D}$ be a linear fractional map with $\varphi(0) \neq 0$ and which does not have the form $\varphi(z) = az + b$. Then $S_{\varphi} = \|C_{\varphi}\|$ if and only if $\|C_{\varphi}\|_{e} = \|C_{\varphi}\|$; likewise $S_{\varphi}^{*} = \|C_{\varphi}\|$ if and only if $\|C_{\varphi}\|_{e} = \|C_{\varphi}\|$.

Proof. Recall that $\|C_{\varphi}\|_{e} \leq S_{\varphi}^{*} \leq S_{\varphi} \leq \|C_{\varphi}\|$ for any univalent φ ; if $\|C_{\varphi}\|_{e} = \|C_{\varphi}\|$, then all of these quantities are equal. On the other hand, suppose that $\|C_{\varphi}\|_{e} < \|C_{\varphi}\|$. Since $\|C_{\varphi}(k_{w})\|_{2} < \|C_{\varphi}\|$ for all w in \mathbb{D} , it follows from our characterization of S_{φ} that $S_{\varphi} < \|C_{\varphi}\|$. Since $S_{\varphi}^{*} \leq S_{\varphi}$, our result follows.

As a consequence of this theorem, we see that $S_{\varphi} = \|C_{\varphi}\|$ if and only if $S_{\varphi}^* = \|C_{\varphi}\|$. We should mention, though, that there are linear fractional φ such that $S_{\varphi}^* = S_{\varphi} < \|C_{\varphi}\|$; for example, Retsek [14] showed that the map $\varphi(z) = \frac{4}{5-z}$ has this property.

Theorem 4.4 no longer holds if we eliminate the hypothesis that φ be linear fractional. In light of the aforementioned results of Bourdon and Retsek, we see that our assertion for S_{φ}^* holds whenever φ is univalent (an observation also made by Retsek [14]). On the other hand, Bourdon and Retsek [4] proved that $S_{\varphi}^* < \|C_{\varphi}\|_e = \|C_{\varphi}\|$ whenever φ is a non-univalent inner function with $\varphi(0) \neq 0$. Extremal noncompactness implies that $S_{\varphi} = \|C_{\varphi}\|$ for any φ . It is not difficult, however, to find further examples of analytic φ with $\varphi(0) \neq 0$ and $\|C_{\varphi}\|_e < S_{\varphi} = \|C_{\varphi}\|$. To that end, let ν be an inner function that fixes the origin; then (as shown by Nordgren [12]) the

composition operator C_{ν} is an isometry of H^2 . Hence, for any analytic $\varphi: \mathbb{D} \to \mathbb{D}$, the operator $C_{\varphi \circ \nu} = C_{\nu} C_{\varphi}$ has the same norm as C_{φ} ; moreover, $S_{\varphi \circ \nu} = \|C_{\varphi \circ \nu}\|$ if and only if $S_{\varphi} = \|C_{\varphi}\|$. Consider the map $\varphi(z) = az + b$, where both a and b are nonzero and |a| + |b| < 1. We know that $S_{\varphi} = \|C_{\varphi}\|$, and that both of the operators C_{φ} and $C_{\varphi \circ \nu}$ are compact. Hence $\|C_{\varphi \circ \nu}\|_e = 0 < S_{\varphi \circ \nu} = \|C_{\varphi \circ \nu}\|_e$; in particular, this result holds if we take $\nu(z) = z^m$ for some integer $m \geq 1$, so that $(\varphi \circ \nu)(z) = az^m + b$.

5. The spectrum of $C_{\varphi}^*C_{\varphi}$

Let $\varphi : \mathbb{D} \to \mathbb{D}$ be a nonconstant linear fractional map, as discussed in Section 3; let σ be defined as in (3.1). Our goal now is to find a set of conditions under which we can determine $\|C_{\varphi}\|$. For a non-negative integer j, let τ_j denote the jth iterate of $\tau = \varphi \circ \sigma$; that is, τ_0 is the identity map on \mathbb{D} and $\tau_{j+1} = \tau \circ \tau_j$. Throughout the next two sections, we make the following assumption:

There is some integer
$$n \geq 0$$
 such that $\tau_n(\varphi(0)) = 0$.

In effect, this condition is a generalization of the case where $\varphi(0) = 0$. To avoid a triviality, we also assume that φ does not have the form $\varphi(z) = az$. These assumptions guarantee that $\tau_j(\varphi(0))$ never equals $\sigma^{-1}(0)$ and that $\tau_j(\varphi(0)) \neq 0$ for $j \neq n$, as we can see from arguments involving fixed points. Furthermore, these conditions exclude all disk automorphisms and all maps of the form $\varphi(z) = az + b$.

Let W denote the set of points $\{\tau_j(\varphi(0))\}_{j=0}^n$; recall that \mathcal{K}_W^{\perp} is the subspace of H^2 consisting of all functions that vanish on W. We claim that \mathcal{K}_W^{\perp} is invariant under the operator $C_{\varphi}^*C_{\varphi}$. Suppose that f belongs to \mathcal{K}_W^{\perp} ; it follows from equation (3.3) that

$$(C_{\varphi}^* C_{\varphi}(f)) (\tau_j(\varphi(0))) = \psi(\tau_j(\varphi(0))) f(\tau_{j+1}(\varphi(0))) + \chi(\tau_j(\varphi(0))) f(\varphi(0))$$
$$= \psi(\tau_j(\varphi(0))) f(\tau_{j+1}(\varphi(0))).$$

For $0 \le j \le n-1$, the term $f(\tau_{j+1}(\varphi(0)))$ equals 0; for j = n, the term $\psi(\tau_j(\varphi(0))) = \psi(0)$ vanishes. Therefore $(C_{\varphi}^*C_{\varphi})(f)$ also belongs to \mathcal{K}_W^{\perp} .

Since $C_{\varphi}^*C_{\varphi}: \mathcal{K}_W^{\perp} \to \mathcal{K}_W^{\perp}$ "looks like" a weighted composition operator, we can deduce a good deal of information about its spectrum. For example, if $C_{\varphi}: H^2 \to H^2$ is compact, then the spectrum of $C_{\varphi}^*C_{\varphi}: \mathcal{K}_W^{\perp} \to \mathcal{K}_W^{\perp}$ is precisely

 $0 \cup \{\psi(w_0)(\tau'(w_0))^j\}_{j=0}^{\infty}$, where w_0 denotes the Denjoy-Wolff point of τ . This fact, however, does not help us to determine $||C_{\varphi}||$ and is not proved here; details appear in the author's thesis [9].

Now consider \mathcal{K}_W , the span of the kernel functions $\left\{K_{\tau_j(\varphi(0))}\right\}_{j=0}^n$; observe that it has dimension n+1. The subspace \mathcal{K}_W is also invariant under the self-adjoint operator $C_{\varphi}^*C_{\varphi}: H^2 \to H^2$. Our strategy for finding $\|C_{\varphi}\|$ centers around determining the spectrum, namely the eigenvalues, of the operator $C_{\varphi}^*C_{\varphi}: \mathcal{K}_W \to \mathcal{K}_W$.

The next several results pertain to the eigenvalues and eigenfunctions of $C_{\varphi}^* C_{\varphi}$. The following proposition serves as a generalization of equation (2.1).

Proposition 5.1. Let λ be an eigenvalue of $C_{\varphi}^*C_{\varphi}: H^2 \to H^2$ with a corresponding eigenfunction g. For every integer $j \geq 0$, the following relationship holds:

$$\lambda^{j+1}g(0) = \left[\prod_{m=0}^{j-1} \psi(\tau_m(\varphi(0)))\right] g(\tau_j(\varphi(0))) + \sum_{k=0}^{j-1} \chi(\tau_k(\varphi(0))) \left[\prod_{m=0}^{k-1} \psi(\tau_m(\varphi(0)))\right] \lambda^{j-k}g(0),$$

where we take $\prod_{m=0}^{-1}(\cdot)$ to equal 1 and $\sum_{k=0}^{-1}(\cdot)$ to equal 0.

Proof (by induction). Since $\lambda g(0) = g(\varphi(0))$, the claim holds for j = 0. For any $j \geq 0$, equation (3.3) dictates that

$$\lambda g(\tau_{j}(\varphi(0))) = \left(\left(C_{\varphi}^{*} C_{\varphi} \right) g \right) \left(\tau_{j}(\varphi(0)) \right)$$

$$= \psi(\tau_{j}(\varphi(0))) g(\tau_{j+1}(\varphi(0))) + \chi(\tau_{j}(\varphi(0))) \lambda g(0).$$

Now assume that our claim holds for the index j. Multiplying the consequent equation by λ and substituting expression (5.1) for $\lambda g(\tau_j(\varphi(0)))$, we obtain

$$\lambda^{j+2}g(0) = \left[\prod_{m=0}^{j-1} \psi(\tau_{m}(\varphi(0)))\right] [\psi(\tau_{j}(\varphi(0)))g(\tau_{j+1}(\varphi(0))) + \chi(\tau_{j}(\varphi(0)))\lambda g(0)] + \sum_{k=0}^{j-1} \chi(\tau_{k}(\varphi(0))) \left[\prod_{m=0}^{k-1} \psi(\tau_{m}(\varphi(0)))\right] \lambda^{j+1-k}g(0) = \left[\prod_{m=0}^{j} \psi(\tau_{m}(\varphi(0)))\right] g(\tau_{j+1}(\varphi(0))) + \sum_{k=0}^{j} \chi(\tau_{k}(\varphi(0))) \left[\prod_{m=0}^{k-1} \psi(\tau_{m}(\varphi(0)))\right] \lambda^{j+1-k}g(0).$$

Hence our claim also holds for the index j + 1.

Since both \mathcal{K}_W and \mathcal{K}_W^{\perp} are invariant under $C_{\varphi}^* C_{\varphi} : H^2 \to H^2$, each eigenvalue λ of $C_{\varphi}^* C_{\varphi}$ has an eigenfunction belonging to one of the two subspaces. The next proposition provides a distinguishing characteristic for eigenfunctions in \mathcal{K}_W^{\perp} .

Proposition 5.2. Let g be an eigenfunction for $C_{\varphi}^*C_{\varphi}: H^2 \to H^2$; then g belongs to \mathcal{K}_W^{\perp} if and only if g(0) = 0.

Proof. If g belongs to $\mathcal{K}_{\overline{W}}^{\perp}$, then by definition $g(0) = g(\tau_n(\varphi(0)))$ equals 0. Conversely, suppose that g is an eigenfunction for $C_{\varphi}^*C_{\varphi}$ with g(0) = 0. In this case, Proposition 5.1 dictates that

$$0 = \lambda^{j+1} g(0) = \left[\prod_{m=0}^{j-1} \psi(\tau_m(\varphi(0))) \right] g(\tau_j(\varphi(0)))$$

for all $j \geq 0$. Since $\psi(\tau_m(\varphi(0)))$ is nonzero for $0 \leq m \leq n-1$, the function g must vanish on the entire set $\{\tau_j(\varphi(0))\}_{j=0}^n$. In other words, g belongs to the subspace \mathcal{K}_W^{\perp} .

Corollary 5.3. Suppose that g_1 and g_2 are eigenfunctions for $C_{\varphi}^*C_{\varphi}$ which belong to \mathcal{K}_W ; if they correspond to the same eigenvalue, then one is a scalar multiple of the other.

Proof. We appeal to the proof of Corollary 2.4, bearing in mind that no eigenfunction in \mathcal{K}_W can vanish at 0.

Consequently every eigenspace of $C_{\varphi}^*C_{\varphi}: \mathcal{K}_W \to \mathcal{K}_W$ has dimension 1. Since $C_{\varphi}^*C_{\varphi}: \mathcal{K}_W \to \mathcal{K}_W$ is a self-adjoint operator on a finite dimensional space, we know that \mathcal{K}_W is spanned by eigenfunctions of $C_{\varphi}^*C_{\varphi}$. Since \mathcal{K}_W has dimension n+1, the operator $C_{\varphi}^*C_{\varphi}: \mathcal{K}_W \to \mathcal{K}_W$ must have n+1 distinct eigenvalues.

We return to the result of Proposition 5.1. Taking j=n and observing that $\chi(\tau_n(\varphi(0)))=\chi(0)=1$, we obtain the expression

$$\lambda^{n+1}g(0) = \sum_{k=0}^{n} \chi(\tau_k(\varphi(0))) \left[\prod_{m=0}^{k-1} \psi(\tau_m(\varphi(0))) \right] \lambda^{n-k}g(0).$$

Suppose that the eigenfunction g belongs to \mathcal{K}_W ; then $g(0) \neq 0$ and

$$\lambda^{n+1} = \sum_{k=0}^{n} \chi(\tau_k(\varphi(0))) \left[\prod_{m=0}^{k-1} \psi(\tau_m(\varphi(0))) \right] \lambda^{n-k}.$$

In other words, any eigenvalue λ of $C_{\varphi}^*C_{\varphi}: \mathcal{K}_W \to \mathcal{K}_W$ is a solution to this polynomial equation. Since there are n+1 distinct eigenvalues and the equation has no more than n+1 roots, we conclude that every solution is an eigenvalue. In other words,

$$(5.2) p(\lambda) = \lambda^{n+1} - \sum_{k=0}^{n} \chi(\tau_k(\varphi(0))) \left[\prod_{m=0}^{k-1} \psi(\tau_m(\varphi(0))) \right] \lambda^{n-k}$$

is the characteristic polynomial of the operator $C_{\varphi}^*C_{\varphi}: \mathcal{K}_W \to \mathcal{K}_W$.

Finally, we make an observation regarding the essential norm of C_{φ} . (The author is indebted to Paul Bourdon for suggesting the proof of this proposition.)

Proposition 5.4. Under the assumptions of this section, $\|C_{\varphi}\|_{e} < 1$.

Proof. If $\|\varphi\|_{\infty} < 1$, then C_{φ} is compact, so our claim holds. Suppose then that $\|\varphi\|_{\infty} = 1$; since φ is not an automorphism, there is precisely one pair of points ζ and ω on $\partial \mathbb{D}$ with $\varphi(\zeta) = \omega$. Bourdon, Levi, Narayan, and Shapiro [3] proved in general that $\sigma(\omega) = \zeta$ and $\sigma'(\omega) = (\varphi'(\zeta))^{-1}$; hence $\tau(\omega) = \omega$ and $\tau'(\omega) = 1$. Since the map $\tau_n \circ \varphi$ fixes the origin and $(\tau_n \circ \varphi)(\zeta) = \omega$, it follows from Lemma 7.33 in [8], together with the Julia-Carathéodory theorem, that $|(\tau_n \circ \varphi)'(\zeta)| > 1$. Therefore

$$1 < |(\tau_n)'(\varphi(\zeta)) \cdot \varphi'(\zeta)| = |(\tau_n)'(\omega) \cdot \varphi'(\zeta)| = |\varphi'(\zeta)|.$$

Since φ is univalent on a neighborhood of the closed unit disk, Shapiro's essential norm formula [15] yields

$$\|C_{\varphi}\|_{e}^{2} = \max \{|\varphi'(w)|^{-1} : |w| = |\varphi(w)| = 1\} = |\varphi'(\zeta)|^{-1} < 1,$$

as we had hoped to show.

Since $||C_{\varphi}|| \geq 1$, Proposition 2.2 dictates that $C_{\varphi}: H^2 \to H^2$ attains its norm on an element of H^2 ; that is, $||C_{\varphi}||^2$ is an eigenvalue of $C_{\varphi}^*C_{\varphi}: H^2 \to H^2$. Proposition 2.3 guarantees that any corresponding eigenfunction must belong to \mathcal{K}_W . In other words, $||C_{\varphi}||^2$ is the largest eigenvalue of $C_{\varphi}^*C_{\varphi}: \mathcal{K}_W \to \mathcal{K}_W$, meaning that it is the largest zero of the polynomial p. Hence we have proved the following result:

Theorem 5.5. Let $\varphi : \mathbb{D} \to \mathbb{D}$ be a linear fractional map, with $\varphi(z) \neq az$. Suppose that $\tau_n(\varphi(0)) = 0$ for some integer $n \geq 0$; then $\|C_{\varphi}\|^2$ is the largest zero of the

polynomial p in equation (5.2), and the elements on which C_{φ} attains its norm are linear combinations of the kernel functions $\left\{K_{\tau_{j}(\varphi(0))}\right\}_{j=0}^{n}$.

Whenever $n \geq 1$, Theorem 4.4 dictates that $S_{\varphi} < \|C_{\varphi}\|$. Assuming that we can find examples of such φ , this would appear to be the first case of a composition operator whose norm we can calculate, for which the norm is not given by the action of C_{φ} on the normalized reproducing kernel functions of H^2 .

6. The eigenfunctions of $C_{\varphi}^*C_{\varphi}$

Having determined a particular eigenvalue λ of $C_{\varphi}^*C_{\varphi}: \mathcal{K}_W \to \mathcal{K}_W$, it is possible to find the corresponding eigenfunctions. In particular, considering Theorem 5.5, we can identify the functions on which the operator C_{φ} attains its norm. Let λ be such an eigenvalue and g be its unique eigenfunction in \mathcal{K}_W with $g(0) = g(\tau_n(\varphi(0))) = 1$. We write

$$g(z) = \sum_{i=0}^{n} \frac{\alpha_i}{1 - \overline{\tau_i(\varphi(0))}z},$$

where we hope to determine the coefficients α_i . For any index $0 \leq j \leq n-1$, we may appeal to Proposition 5.1 to find $g(\tau_j(\varphi(0)))$ explicitly in terms of λ :

$$g(\tau_j(\varphi(0))) = \frac{\lambda^{j+1} - \sum_{k=0}^{j-1} \chi(\tau_k(\varphi(0))) \left[\prod_{m=0}^{k-1} \psi(\tau_m(\varphi(0))) \right] \lambda^{j-k}}{\prod_{m=0}^{j-1} \psi(\tau_m(\varphi(0)))}.$$

Therefore we obtain the matrix equation

$$\left[\frac{1}{1-\overline{\tau_i(\varphi(0))}\tau_j(\varphi(0))}\right]_{0\leq j,i\leq n} [\alpha_i]_{0\leq i\leq n} = [g(\tau_j(\varphi(0)))]_{0\leq j\leq n}.$$

The $(n+1)\times(n+1)$ matrix is simply the Gram matrix of the vectors $\{K_{\tau_i(\varphi(0))}\}_{i=0}^n$, whose determinant is positive since the kernel functions are linearly independent (see [11], p. 595). Hence we can use Cramer's rule to solve explicitly for the coefficients.

For example, take n = 1. Then

$$\begin{bmatrix} \frac{1}{1-|\varphi(0)|^2} & 1\\ 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha_0\\ \alpha_1 \end{bmatrix} = \begin{bmatrix} g(\varphi(0))\\ g(0) \end{bmatrix} = \begin{bmatrix} \lambda\\ 1 \end{bmatrix},$$

14

so

$$\alpha_0 = \frac{ \left| \begin{array}{c|c} \lambda & 1 \\ 1 & 1 \end{array} \right| }{ \left| \begin{array}{c|c} \frac{1}{1 - |\varphi(0)|^2} & 1 \\ \hline 1 & 1 \end{array} \right| } = \frac{\lambda - 1}{\frac{1}{1 - |\varphi(0)|^2} - 1} \text{ and } \alpha_1 = \frac{ \left| \begin{array}{c|c} \frac{1}{1 - |\varphi(0)|^2} & \lambda \\ \hline 1 & 1 \end{array} \right| }{ \left| \begin{array}{c|c} \frac{1}{1 - |\varphi(0)|^2} & 1 \\ \hline 1 & 1 \end{array} \right| } = \frac{\frac{1}{1 - |\varphi(0)|^2} - \lambda}{\frac{1}{1 - |\varphi(0)|^2} - 1}.$$

7. Examples

It is not difficult to find examples of linear fractional $\varphi : \mathbb{D} \to \mathbb{D}$ with $\tau(\varphi(0)) = 0$. In terms of the coefficients of φ , this condition is equivalent to

$$|d|^2 - |b|^2 = \frac{a}{b} \left(\overline{c}d - \overline{a}b \right).$$

In this case, considering the polynomial p in equation (5.2), we see that any eigenvalue λ of $C^*_{\varphi}C_{\varphi}: \mathcal{K}_W \to \mathcal{K}_W$ has the form

$$\lambda = \frac{\chi(\varphi(0)) \pm \sqrt{\chi(\varphi(0))^2 + 4\psi(\varphi(0))}}{2} = \frac{\frac{a\overline{c}d}{b} \pm \sqrt{\left(\frac{a\overline{c}d}{b}\right)^2 - 4\left(\overline{a}\overline{d} - \overline{b}\overline{c}\right)ad}}{2\left(\left|d\right|^2 - \left|b\right|^2\right)}.$$

In particular, $\|C_{\varphi}\|^2$ is the larger of these two values. For example, take

$$\varphi(z) = \frac{16z + 8}{19z + 32}.$$

Since $\|\varphi\|_{\infty} < 1$, the operator C_{φ} is compact. Observe that $\tau(\varphi(0)) = 0$, which means that

$$\|C_{\varphi}\|^2 = \frac{19 + \sqrt{181}}{30} \approx 1.081787468.$$

We now turn our attention to a larger class of examples. Let n be a positive integer and r a real number greater than n. Define

$$\varphi(z) = \frac{rz - n}{-(n+1)z + (r+1)}.$$

It is easy to show that φ is a self-map of \mathbb{D} and that $\partial \varphi(\mathbb{D}) \cap \partial \mathbb{D} = \{1\}$. Note that

$$\|C_{\varphi}\|_{e}^{2} = |\varphi'(1)|^{-1} = \frac{(r-n)^{2}}{r(r+1) - n(n+1)} = \frac{r-n}{r+n+1}.$$

A straightforward induction argument shows that each iterate τ_i has the form

$$\tau_j(z) = \frac{(r+n-j+1)z+j}{-jz+(r+n+j+1)}.$$

Consequently

$$\tau_{j}(\varphi(0)) = \frac{(r+n-j+1)\left(-\frac{n}{r+1}\right)+j}{-j\left(-\frac{n}{r+1}\right)+(r+n+j+1)} = \frac{j-n}{r+j+1},$$

from which we see that $\tau_n(\varphi(0)) = 0$. Observe that

$$\psi(\tau_{j}(\varphi(0))) = \frac{(r(r+1) - n(n+1))(\frac{j-n}{r+j+1})}{(r(\frac{j-n}{r+j+1}) + n+1)(n(\frac{j-n}{r+j+1}) + r+1)}$$
$$= \frac{(r-n)(j-n)(r+j+1)}{(j+1)(r+n+1)(r+j-n+1)}$$

and

$$\chi(\tau_j(\varphi(0))) = \frac{n+1}{r\left(\frac{j-n}{r+j+1}\right)+n+1} = \frac{(n+1)(r+j+1)}{(j+1)(r+n+1)}.$$

Hence the characteristic polynomial for $C_{\varphi}^* C_{\varphi} : \mathcal{K}_W \to \mathcal{K}_W$ may be written

$$p(\lambda) = \lambda^{n+1} - \sum_{k=0}^{n} \frac{\left(n+1\right)\left(r+k+1\right)}{\left(k+1\right)\left(r+n+1\right)} \left[\prod_{m=0}^{k-1} \frac{\left(r-n\right)\left(m-n\right)\left(r+m+1\right)}{\left(m+1\right)\left(r+n+1\right)\left(r+m-n+1\right)} \right] \lambda^{n-k},$$

and $\|C_{\varphi}\|^2$ is the largest zero of this polynomial.

In particular, if n = 1 then

$$\|C_{\varphi}\|^2 = \frac{r+1}{r+2} + \frac{1}{r+2} \sqrt{\frac{2(r+1)}{r}}.$$

For n=2, we solve the resulting cubic equation to obtain

$$\|C_{\varphi}\|^2 = \frac{r+1}{r+3} + \frac{2}{r+3} \sqrt[3]{\frac{3(r+1)}{r(r-1)}} \operatorname{Re} \left(\sqrt[3]{(r+4) + i(r-2)} \sqrt{\frac{2(r+2)}{r-1}} \right),$$

where we take the principal branch of the cube root function. For example, if

$$\varphi(z) = \frac{4z - 2}{-3z + 5}$$

then

$$\|C_{\varphi}\|^2 = \frac{5}{7} + \frac{2\operatorname{Re}\sqrt[3]{10+5i}}{7} = \frac{5}{7} + \frac{2\sqrt{5}}{7}\cos\left(\frac{\arctan\left(\frac{1}{2}\right)}{3}\right) \approx 1.345547525.$$

References

- M. J. APPEL, P. S. BOURDON and J. J. THRALL, Norms of composition operators on the Hardy space, *Experiment. Math.*, 5 (1996), 111-117.
- [2] P. AVRAMIDOU and F. JAFARI, On norms of composition operators on Hardy spaces, Function Spaces (Edwardsville, 1998), 47-54, Contemp. Math., 232, Amer. Math. Soc., Providence, 1999.
- [3] P. S. BOURDON, D. LEVI, S. NARAYAN and J. H. SHAPIRO, Which linear-fractional composition operators are essentially normal?, preprint, 2002.
- [4] P. S. BOURDON and D. Q. RETSEK, Reproducing kernels and norms of composition operators, Acta Sci. Math. (Szeged), 67 (2001), 387-394.
- [5] J. A. Cima and A. L. Matheson, Essential norms of composition operators and Aleksandrov measures, *Pacific J. Math.*, 179 (1997), 59-64.
- [6] C. C. COWEN, Linear fractional composition operators on H², Integral Equations Operator Theory, 11 (1988), 151-160.
- [7] C. C. Cowen and T. L. Kriete, Subnormality and composition operators on H², J. Funct. Anal., 81 (1988), 298-319.
- [8] C. C. Cowen and B. D. Maccluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995.
- [9] C. Hammond, On the Norm of a Composition Operator, Thesis, University of Virginia, 2003.
- [10] A. A. KIRILLOV and A. D. GVISHIANI, Theorems and Problems in Functional Analysis, translated by H. H. McFaden, Springer-Verlag, New York, 1982.
- [11] D. S. MITRINOVIĆ, J. E. PEČARIĆ and A. M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht/Boston/London, 1993.
- [12] E. A. NORDGREN, Composition operators, Canadian J. Math., 20 (1968), 442-449.
- [13] D. B. PAKORNY and J. E. SHAPIRO, Continuity of the norm of a composition operator, *Integral Equations Operator Theory*, to appear.
- [14] D. Q. Retsek, The Kernel Supremum Property and Norms of Composition Operators, Thesis, Washington University, 2001.
- [15] J. H. Shapiro, The essential norm of a composition operator, Annals of Math., 125 (1987), 375-404.
- C. Hammond, Department of Mathematics, University of Virginia, Charlottesville, VA 22904-4137, USA

 $E\text{-}mail\ address{:}\ \mathtt{cnh5u@virginia.edu}$