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Abstract. For any analytic map ϕ : D→ D, the composition operator Cϕ is

bounded on the Hardy space H2, but there is no known procedure for precisely

computing its norm. This paper considers the situation where ϕ is a linear

fractional map. We determine the conditions under which ‖Cϕ‖ is given by

the action of either Cϕ or C∗ϕ on the normalized reproducing kernel functions

of H2. We also introduce a new set of conditions on ϕ under which we can

calculate ‖Cϕ‖; moreover, we identify the elements of H2 on which such an

operator Cϕ attains its norm. Several specific examples are provided.

1. Introduction

For 1 ≤ p < ∞, the Hardy space Hp is the collection of all analytic functions f

on D = {z ∈ C : |z| < 1} with

‖f‖p
p = sup

0<r<1

∫ 2π

0

∣∣f (
reiθ

)∣∣p dθ

2π
< ∞.

Under this norm, Hp is a Banach space for all such p and a Hilbert space for p = 2.

For any analytic map ϕ : D→ D, the composition operator Cϕ on Hp is defined by

the rule

Cϕ(f) = f ◦ ϕ.

Every composition operator is bounded, with

(1.1)

(
1

1− |ϕ(0)|2
)1/p

≤ ‖Cϕ : Hp → Hp‖ ≤
(

1 + |ϕ(0)|
1− |ϕ(0)|

)1/p

.

These inequalities are sharp; for any value of ϕ(0), there are particular examples

of ϕ for which ‖Cϕ‖ equals the upper bound and examples for which ‖Cϕ‖ equals

the lower bound. In general, though, there is no known procedure for precisely
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2 C. HAMMOND

computing the norm of Cϕ. We see from expression (1.1) that ‖Cϕ‖ = 1 whenever

ϕ(0) = 0. There are only a few other cases where we can determine the norm

exactly; for example

(1) ϕ is inner; that is, limr↑1
∣∣ϕ (

reiθ
)∣∣ = 1 for almost all θ in [0, 2π),

(2) ϕ(z) = az + b where |a|+ |b| ≤ 1,

(3) ϕ(z) = (r+s)z+(1−s)
r(1−s)z+(1+sr) where 0 < s < 1 and 0 ≤ r ≤ 1.

These results appear in [12], [6], and [7] respectively. Cowen and MacCluer [8]

provide a comprehensive treatment of this material, as well as a thorough overview

of results relating to composition operators.

A straightforward argument involving Blaschke products shows that the follow-

ing norm relationship holds for all p ≥ 1:

‖Cϕ : Hp → Hp‖p =
∥∥Cϕ : H2 → H2

∥∥2
.

Therefore it suffices to focus our attention on the Hilbert space H2. When studying

this space, it is often helpful to consider the reproducing kernel functions {Kw}w∈D,

defined by the property that 〈f, Kw〉 = f(w) for all f in H2. These functions have

the form Kw(z) = (1− wz)−1; hence

‖Kw‖2 =
√
〈Kw,Kw〉 =

√
Kw(w) =

√
1

1− |w|2 .

Throughout this paper, we write kw to denote the normalized kernel function

kw(z) =
Kw(z)
‖Kw‖2

=

√
1− |w|2
1− wz

.

For a subset W of D, let KW denote the closed linear span of the kernel functions

{Kw}w∈W . Observe that the orthogonal complement K⊥W is precisely the set of all

functions in H2 that vanish on W .

The kernel functions provide a valuable tool for the study of composition oper-

ators, in part because of the property that C∗ϕ(Kw) = Kϕ(w) for any adjoint C∗ϕ.

Several authors have explored the connection between the kernel functions and the

norm of Cϕ. In the cases where we know ‖Cϕ‖, the norm is given by the action of

the operator on the set of normalized kernel functions. This situation, however, is

not true in general, a fact first proved by Appel, Bourdon, and Thrall [1].
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The main results of this paper pertain to the situation where ϕ : D → D is a

linear fractional map. In this case, we determine the conditions under which ‖Cϕ‖
is given by the action of either Cϕ or C∗ϕ on the normalized reproducing kernel

functions (Theorem 4.4). We also introduce a new set of conditions on ϕ under

which, at least in principle, we can calculate ‖Cϕ‖ (Theorem 5.5). For such ϕ, we

identify the elements of H2 on which Cϕ attains its norm, each of which is a finite

linear combination of kernel functions.

2. Preliminaries

Let T be a bounded operator on a Hilbert space H. One reasonable strategy for

determining ‖T‖ is to investigate the spectrum of the operator T ∗T . Since T ∗T is

self-adjoint, its spectral radius equals ‖T ∗T‖ = ‖T‖2. The following observation

underscores the connection between the spectrum of T ∗T and the norm of T .

Proposition 2.1. Let h be an element of H; then ‖T (h)‖ = ‖T‖ ‖h‖ if and only

if (T ∗T )(h) = ‖T‖2 h.

This proposition can be proved with a straightforward Hilbert space argument,

or can be deduced from other well-known results (e.g. [10], p. 92). Whenever

‖T (h)‖ = ‖T‖ ‖h‖ for h 6= 0, we say that the operator T attains its norm on the

element h.

Let ‖ · ‖e, r(·), and re(·) denote respectively the essential norm, the spectral

radius, and the essential spectral radius of an operator. Here the adjective essential

signifies that a particular quantity is taken with respect to the Calkin algebra. In

light of Proposition 2.1, our next observation follows easily.

Proposition 2.2. If ‖T‖e < ‖T‖, then T attains its norm on an element of H.

Proof. Consider the positive operator T ∗T ; observe that

re(T ∗T ) = ‖T ∗T‖e = ‖T‖2e < ‖T‖2 = ‖T ∗T‖ = r(T ∗T ).

Therefore the largest element of the spectrum of T ∗T does not belong to the essen-

tial spectrum, meaning that it is an eigenvalue of finite multiplicity. Consequently

T ∗T has an eigenvector corresponding to ‖T‖2, on which the operator T attains its

norm. ¤
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It is helpful to remember Proposition 2.2 when studying composition operators,

especially since we have a formula (due to Joel Shapiro [15]) for the essential norm

of Cϕ on H2. As it happens, in cases (1) and (3) where we know ‖Cϕ‖, the

operators have the property that ‖Cϕ‖e = ‖Cϕ‖, a condition sometimes called

extremal noncompactness.

The remaining results in this section are specific to composition operators on the

Hardy space H2.

Proposition 2.3. Suppose that the operator Cϕ : H2 → H2 attains its norm on

an element g of H2. If ϕ is not an inner function, then g cannot vanish at any

point of D.

Proof. Suppose that g(w) = 0 for some w in D. Then the function

g̃(z) =
g(z)
bw(z)

=
g(z)
w−z
1−wz

belongs to H2, with ‖g̃‖2 = ‖g‖2. Since ϕ is not an inner function, neither is the

composition bw ◦ ϕ. Therefore

lim
r↑1

∣∣∣∣∣
g

(
ϕ

(
reiθ

))

bw (ϕ (reiθ))

∣∣∣∣∣ > lim
r↑1

∣∣g (
ϕ

(
reiθ

))∣∣

for θ in a set of positive measure. Hence ‖Cϕ(g̃)‖2 > ‖Cϕ(g)‖2, contradicting our

choice of g. ¤

Corollary 2.4. Suppose that ϕ is not inner; if g1 and g2 are functions on which

Cϕ attains its norm, then one is a scalar multiple of the other.

Proof. Both g1 and g2 are eigenfunctions for C∗ϕCϕ : H2 → H2 correspond-

ing to the eigenvalue ‖Cϕ‖2; moreover, g1(0) and g2(0) are both nonzero. If

g1 − (g1(0)/g2(0)) g2 were not identically 0, then it would be an eigenfunction cor-

responding to ‖Cϕ‖2, in other words a function on which Cϕ attains its norm, that

vanishes at 0. Therefore g1 = (g1(0)/g2(0)) g2, as we had hoped to show. ¤

We end this section with a straightforward, but remarkably useful observation.

Let λ be an eigenvalue for C∗ϕCϕ with a corresponding eigenfunction g; since Cϕ
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fixes the constant function K0(z) = 1, we see that

g(ϕ(0)) = 〈Cϕ(g),K0〉 = 〈Cϕ(g), Cϕ(K0)〉(2.1)

=
〈(

C∗ϕCϕ

)
(g),K0

〉
= λ〈g,K0〉 = λg(0).

In particular, this result holds for λ = ‖Cϕ‖2 if Cϕ attains its norm on g.

3. The operator C∗ϕCϕ

Let

ϕ(z) =
az + b

cz + d

be a nonconstant linear fractional self-map of D. Cowen [6] proved that the adjoint

operator C∗ϕ may be written TγCσT ∗η , with

σ(z) =
az − c

−bz + d
,(3.1)

γ(z) =
1

−bz + d
,

η(z) = cz + d,

where Tγ and Tη denote the corresponding Toeplitz operators. Hence
(
C∗ϕCϕ

)
(f) =

(
TγCσT ∗η Cϕ

)
(f) for any f in H2. Recalling that T ∗z is the backward shift on H2,

we see that

((
C∗ϕCϕ

)
f
)
(z) = γ(z)

(
c

(
f(ϕ(σ(z)))− f(ϕ(0))

σ(z)

)
+ df(ϕ(σ(z)))

)

=
c

az − c
[f(ϕ(σ(z)))− f(ϕ(0))] +

d

−bz + d
f(ϕ(σ(z)))(3.2)

for all z in D not equal to σ−1(0) = c
a . We rewrite this expression simply as

(3.3)
((

C∗ϕCϕ

)
f
)
(z) = ψ(z)f(τ(z)) + χ(z)f(ϕ(0)),

where τ denotes the composition ϕ ◦ σ and

ψ(z) =

(
ad− bc

)
z

(az − c)
(−bz + d

) and χ(z) =
c

−az + c
.

Equation (3.3) holds for all points except z = σ−1(0), which only belongs to D

if |c| < |a|. Having such a concrete representation for C∗ϕCϕ makes it easier to

investigate its spectrum.
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4. The quantities Sϕ and S∗ϕ

Let ϕ be an analytic self-map of D. Bourdon and Retsek [4] defined the quantities

Sϕ = sup
w∈D

{‖Cϕ(Kw)‖2
‖Kw‖2

}
= sup

w∈D

{‖Cϕ(kw)‖2
}

and

S∗ϕ = sup
w∈D

{∥∥C∗ϕ(Kw)
∥∥

2

‖Kw‖2

}
= sup

w∈D

{∥∥C∗ϕ(kw)
∥∥

2

}
.

Among other results, they proved that S∗ϕ ≤ Sϕ for all ϕ and that S∗ϕ = Sϕ = ‖Cϕ‖
whenever ϕ(0) = 0 or ϕ has the form ϕ(z) = az + b; moreover, when ϕ(0) 6= 0

and ϕ(z) 6= az + b, they showed that S∗ϕ cannot equal ‖Cϕ‖ unless ‖Cϕ‖e = ‖Cϕ‖.
The quantities Sϕ and S∗ϕ were also studied, with different notation, by Avramidou

and Jafari [2]. In this section, we determine the conditions under which either

Sϕ = ‖Cϕ‖ or S∗ϕ = ‖Cϕ‖ when ϕ : D→ D is a linear fractional map.

We begin with a few observations which hold for any analytic ϕ : D→ D. If {wj}
is a sequence of points converging to w in D, then the normalized kernel functions
{
kwj

}
converge to kw in the norm of H2. Therefore, since Cϕ is a bounded operator,

either Sϕ = ‖Cϕ(kw)‖2 for a particular w in D or Sϕ = lim sup|w|↑1 ‖Cϕ(kw)‖2. The

analogous result holds for S∗ϕ. Cima and Matheson [5] observed that

‖Cϕ‖e = lim sup
|w|↑1

‖Cϕ(kw)‖2 ,

a fact which follows from the proof of Shapiro’s essential norm formula [15]. In the

case where ϕ is univalent, Shapiro’s formula may be expressed

‖Cϕ‖e = lim sup
|w|↑1

√
1− |w|2

1− |ϕ(w)|2 = lim sup
|w|↑1

∥∥C∗ϕ(kw)
∥∥

2
.

Therefore Sϕ ≥ ‖Cϕ‖e for any ϕ and S∗ϕ ≥ ‖Cϕ‖e whenever ϕ is univalent.

Before proving our results for linear fractional ϕ, we need the following pair of

general lemmas. The first, which pertains to the lower bound in expression (1.1),

appears with a different proof in a current paper of David Pakorny and Jonathan

Shapiro [13].

Lemma 4.1. If ϕ : D→ D is a nonconstant analytic map with ϕ(0) 6= 0, then

‖Cϕ‖ >

√
1

1− |ϕ(0)|2 .
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Proof. The Hardy space H2 has the property that |f(0)| < ‖f‖2 for any noncon-

stant element f . Observe that the function kϕ(0) ◦ ϕ is nonconstant; therefore

‖Cϕ‖ ≥
∥∥Cϕ

(
kϕ(0)

)∥∥
2

>
∣∣(kϕ(0) ◦ ϕ

)
(0)

∣∣ =

√
1

1− |ϕ(0)|2 ,

as we had hoped to show. ¤

Lemma 4.2. Suppose that ϕ : D→ D is a nonconstant analytic map with ϕ(0) 6=
0. If the operator Cϕ attains its norm on a normalized kernel function kw, then

|w| > |ϕ(0)|.

Proof. Suppose that Cϕ attains its norm on kw; then Kw is an eigenfunction for

C∗ϕCϕ corresponding to ‖Cϕ‖2. Appealing to equation (2.1), we see that

1
1− wϕ(0)

= Kw(ϕ(0)) = ‖Cϕ‖2 Kw(0) = ‖Cϕ‖2 .

It follows from Lemma 4.1 that

1
1− wϕ(0)

>
1

1− |ϕ(0)|2 ,

meaning that |w| > |ϕ(0)|. ¤

Now we turn our attention to the situation where ϕ is a linear fractional map.

Proposition 4.3. Let ϕ : D → D be a linear fractional map with ϕ(0) 6= 0 and

which does not have the form ϕ(z) = az + b. For any point w in D,

‖Cϕ‖ > ‖Cϕ(kw)‖2 .

Proof. Suppose, to the contrary, that Cϕ attains its norm on some normalized

kernel function kw; then Kw is an eigenfunction for C∗ϕCϕ. Hence the subspace

K{w} = {αKw : α ∈ C} is invariant under C∗ϕCϕ. Since C∗ϕCϕ is self-adjoint, the

orthogonal complement K⊥{w} = {f ∈ H2 : f(w) = 0} is also invariant under the

operator; this observation will give rise to a contradiction. Lemma 4.2 tells us that

w cannot equal 0 or ϕ(0). Suppose then that w is the problematic point σ−1(0) = c
a .

Applying L’Hôpital’s rule to expression (3.2), we obtain

(
C∗ϕCϕ(f)

)
(σ−1(0)) =

c

a
f ′(ϕ(0))τ ′(σ−1(0)) +

ad

ad− bc
f(ϕ(0)),

which must equal 0 for any f inK⊥{w}. Consider the function f1(z) = (z−ϕ(0))(z−w)

in K⊥{w}. The assumption that ϕ(z) 6= az + b guarantees that c 6= 0; since
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f1(ϕ(0)) = 0 and τ = ϕ ◦ σ is univalent, the term f ′1(ϕ(0)) must equal 0, which is

not the case. Therefore w cannot equal σ−1(0). Hence equation (3.3) is valid at w,

meaning that

0 =
(
C∗ϕCϕ(f)

)
(w) = ψ(w)f(τ(w)) + χ(w)f(ϕ(0))

for all f in K⊥{w}. Again consider the function f1. Observe that f1(ϕ(0)) = 0; since

w 6= 0, the term ψ(w) is nonzero. Hence f1(τ(w)) = 0, meaning that τ(w) equals

either w or ϕ(0). If τ(w) = ϕ(0), then w = σ−1(0), which is not the case; therefore

τ(w) = w. Now take f2(z) = z − w in K⊥{w}. Since f2(τ(w)) = f2(w) = 0 and

χ(w) = c
c−aw 6= 0, we see that f2(ϕ(0)) = 0. Therefore ϕ(0) must equal w, which

is a contradiction. ¤

We now state main result of this section:

Theorem 4.4. Let ϕ : D → D be a linear fractional map with ϕ(0) 6= 0 and

which does not have the form ϕ(z) = az + b. Then Sϕ = ‖Cϕ‖ if and only if

‖Cϕ‖e = ‖Cϕ‖; likewise S∗ϕ = ‖Cϕ‖ if and only if ‖Cϕ‖e = ‖Cϕ‖.

Proof. Recall that ‖Cϕ‖e ≤ S∗ϕ ≤ Sϕ ≤ ‖Cϕ‖ for any univalent ϕ; if ‖Cϕ‖e = ‖Cϕ‖,
then all of these quantities are equal. On the other hand, suppose that ‖Cϕ‖e <

‖Cϕ‖. Since ‖Cϕ(kw)‖2 < ‖Cϕ‖ for all w in D, it follows from our characterization

of Sϕ that Sϕ < ‖Cϕ‖. Since S∗ϕ ≤ Sϕ, our result follows. ¤

As a consequence of this theorem, we see that Sϕ = ‖Cϕ‖ if and only if S∗ϕ =

‖Cϕ‖. We should mention, though, that there are linear fractional ϕ such that

S∗ϕ = Sϕ < ‖Cϕ‖; for example, Retsek [14] showed that the map ϕ(z) = 4
5−z has

this property.

Theorem 4.4 no longer holds if we eliminate the hypothesis that ϕ be linear frac-

tional. In light of the aforementioned results of Bourdon and Retsek, we see that our

assertion for S∗ϕ holds whenever ϕ is univalent (an observation also made by Retsek

[14]). On the other hand, Bourdon and Retsek [4] proved that S∗ϕ < ‖Cϕ‖e = ‖Cϕ‖
whenever ϕ is a non-univalent inner function with ϕ(0) 6= 0. Extremal noncompact-

ness implies that Sϕ = ‖Cϕ‖ for any ϕ. It is not difficult, however, to find further

examples of analytic ϕ with ϕ(0) 6= 0 and ‖Cϕ‖e < Sϕ = ‖Cϕ‖. To that end, let

ν be an inner function that fixes the origin; then (as shown by Nordgren [12]) the
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composition operator Cν is an isometry of H2. Hence, for any analytic ϕ : D→ D,

the operator Cϕ◦ν = CνCϕ has the same norm as Cϕ; moreover, Sϕ◦ν = ‖Cϕ◦ν‖
if and only if Sϕ = ‖Cϕ‖. Consider the map ϕ(z) = az + b, where both a and b

are nonzero and |a| + |b| < 1. We know that Sϕ = ‖Cϕ‖, and that both of the

operators Cϕ and Cϕ◦ν are compact. Hence ‖Cϕ◦ν‖e = 0 < Sϕ◦ν = ‖Cϕ◦ν‖; in

particular, this result holds if we take ν(z) = zm for some integer m ≥ 1, so that

(ϕ ◦ ν)(z) = azm + b.

5. The spectrum of C∗ϕCϕ

Let ϕ : D→ D be a nonconstant linear fractional map, as discussed in Section 3;

let σ be defined as in (3.1). Our goal now is to find a set of conditions under which

we can determine ‖Cϕ‖. For a non-negative integer j, let τj denote the jth iterate

of τ = ϕ ◦ σ; that is, τ0 is the identity map on D and τj+1 = τ ◦ τj . Throughout

the next two sections, we make the following assumption:

There is some integer n ≥ 0 such that τn(ϕ(0)) = 0.

In effect, this condition is a generalization of the case where ϕ(0) = 0. To avoid

a triviality, we also assume that ϕ does not have the form ϕ(z) = az. These

assumptions guarantee that τj(ϕ(0)) never equals σ−1(0) and that τj(ϕ(0)) 6= 0 for

j 6= n, as we can see from arguments involving fixed points. Furthermore, these

conditions exclude all disk automorphisms and all maps of the form ϕ(z) = az + b.

Let W denote the set of points {τj(ϕ(0))}n
j=0; recall that K⊥W is the subspace of

H2 consisting of all functions that vanish on W . We claim that K⊥W is invariant

under the operator C∗ϕCϕ. Suppose that f belongs to K⊥W ; it follows from equation

(3.3) that

(
C∗ϕCϕ(f)

)
(τj(ϕ(0))) = ψ(τj(ϕ(0)))f(τj+1(ϕ(0))) + χ(τj(ϕ(0)))f(ϕ(0))

= ψ(τj(ϕ(0)))f(τj+1(ϕ(0))).

For 0 ≤ j ≤ n−1, the term f(τj+1(ϕ(0))) equals 0; for j = n, the term ψ(τj(ϕ(0))) =

ψ(0) vanishes. Therefore
(
C∗ϕCϕ

)
(f) also belongs to K⊥W .

Since C∗ϕCϕ : K⊥W → K⊥W “looks like” a weighted composition operator, we can

deduce a good deal of information about its spectrum. For example, if

Cϕ : H2 → H2 is compact, then the spectrum of C∗ϕCϕ : K⊥W → K⊥W is precisely
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0∪{
ψ(w0)(τ ′(w0))j

}∞
j=0

, where w0 denotes the Denjoy-Wolff point of τ . This fact,

however, does not help us to determine ‖Cϕ‖ and is not proved here; details appear

in the author’s thesis [9].

Now consider KW , the span of the kernel functions
{
Kτj(ϕ(0))

}n

j=0
; observe that

it has dimension n + 1. The subspace KW is also invariant under the self-adjoint

operator C∗ϕCϕ : H2 → H2. Our strategy for finding ‖Cϕ‖ centers around deter-

mining the spectrum, namely the eigenvalues, of the operator C∗ϕCϕ : KW → KW .

The next several results pertain to the eigenvalues and eigenfunctions of C∗ϕCϕ.

The following proposition serves as a generalization of equation (2.1).

Proposition 5.1. Let λ be an eigenvalue of C∗ϕCϕ : H2 → H2 with a corresponding

eigenfunction g. For every integer j ≥ 0, the following relationship holds:

λj+1g(0) =

[
j−1∏
m=0

ψ(τm(ϕ(0)))

]
g(τj(ϕ(0)))+

j−1∑

k=0

χ(τk(ϕ(0)))

[
k−1∏
m=0

ψ(τm(ϕ(0)))

]
λj−kg(0),

where we take
∏−1

m=0(·) to equal 1 and
∑−1

k=0(·) to equal 0.

Proof (by induction). Since λg(0) = g(ϕ(0)), the claim holds for j = 0. For any

j ≥ 0, equation (3.3) dictates that

λg(τj(ϕ(0))) =
((

C∗ϕCϕ

)
g
)
(τj(ϕ(0)))

= ψ(τj(ϕ(0)))g(τj+1(ϕ(0))) + χ(τj(ϕ(0)))λg(0).(5.1)

Now assume that our claim holds for the index j. Multiplying the consequent

equation by λ and substituting expression (5.1) for λg(τj(ϕ(0))), we obtain

λj+2g(0) =

[
j−1∏
m=0

ψ(τm(ϕ(0)))

]
[ψ(τj(ϕ(0)))g(τj+1(ϕ(0))) + χ(τj(ϕ(0)))λg(0)]

+
j−1∑

k=0

χ(τk(ϕ(0)))

[
k−1∏
m=0

ψ(τm(ϕ(0)))

]
λj+1−kg(0)

=

[
j∏

m=0

ψ(τm(ϕ(0)))

]
g(τj+1(ϕ(0)))

+
j∑

k=0

χ(τk(ϕ(0)))

[
k−1∏
m=0

ψ(τm(ϕ(0)))

]
λj+1−kg(0).

Hence our claim also holds for the index j + 1. ¤



ON THE NORM OF A COMPOSITION OPERATOR 11

Since both KW and K⊥W are invariant under C∗ϕCϕ : H2 → H2, each eigenvalue

λ of C∗ϕCϕ has an eigenfunction belonging to one of the two subspaces. The next

proposition provides a distinguishing characteristic for eigenfunctions in K⊥W .

Proposition 5.2. Let g be an eigenfunction for C∗ϕCϕ : H2 → H2; then g belongs

to K⊥W if and only if g(0) = 0.

Proof. If g belongs to K⊥W , then by definition g(0) = g(τn(ϕ(0))) equals 0. Con-

versely, suppose that g is an eigenfunction for C∗ϕCϕ with g(0) = 0. In this case,

Proposition 5.1 dictates that

0 = λj+1g(0) =

[
j−1∏
m=0

ψ(τm(ϕ(0)))

]
g(τj(ϕ(0)))

for all j ≥ 0. Since ψ(τm(ϕ(0))) is nonzero for 0 ≤ m ≤ n− 1, the function g must

vanish on the entire set {τj(ϕ(0))}n
j=0. In other words, g belongs to the subspace

K⊥W . ¤

Corollary 5.3. Suppose that g1 and g2 are eigenfunctions for C∗ϕCϕ which belong

to KW ; if they correspond to the same eigenvalue, then one is a scalar multiple of

the other.

Proof. We appeal to the proof of Corollary 2.4, bearing in mind that no eigenfunc-

tion in KW can vanish at 0. ¤

Consequently every eigenspace of C∗ϕCϕ : KW → KW has dimension 1. Since

C∗ϕCϕ : KW → KW is a self-adjoint operator on a finite dimensional space, we know

that KW is spanned by eigenfunctions of C∗ϕCϕ. Since KW has dimension n + 1,

the operator C∗ϕCϕ : KW → KW must have n + 1 distinct eigenvalues.

We return to the result of Proposition 5.1. Taking j = n and observing that

χ(τn(ϕ(0))) = χ(0) = 1, we obtain the expression

λn+1g(0) =
n∑

k=0

χ(τk(ϕ(0)))

[
k−1∏
m=0

ψ(τm(ϕ(0)))

]
λn−kg(0).

Suppose that the eigenfunction g belongs to KW ; then g(0) 6= 0 and

λn+1 =
n∑

k=0

χ(τk(ϕ(0)))

[
k−1∏
m=0

ψ(τm(ϕ(0)))

]
λn−k.
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In other words, any eigenvalue λ of C∗ϕCϕ : KW → KW is a solution to this

polynomial equation. Since there are n + 1 distinct eigenvalues and the equation

has no more than n + 1 roots, we conclude that every solution is an eigenvalue. In

other words,

(5.2) p(λ) = λn+1 −
n∑

k=0

χ(τk(ϕ(0)))

[
k−1∏
m=0

ψ(τm(ϕ(0)))

]
λn−k

is the characteristic polynomial of the operator C∗ϕCϕ : KW → KW .

Finally, we make an observation regarding the essential norm of Cϕ. (The author

is indebted to Paul Bourdon for suggesting the proof of this proposition.)

Proposition 5.4. Under the assumptions of this section, ‖Cϕ‖e < 1.

Proof. If ‖ϕ‖∞ < 1, then Cϕ is compact, so our claim holds. Suppose then that

‖ϕ‖∞ = 1; since ϕ is not an automorphism, there is precisely one pair of points

ζ and ω on ∂D with ϕ(ζ) = ω. Bourdon, Levi, Narayan, and Shapiro [3] proved

in general that σ(ω) = ζ and σ′(ω) = (ϕ′(ζ))−1; hence τ(ω) = ω and τ ′(ω) = 1.

Since the map τn ◦ ϕ fixes the origin and (τn ◦ ϕ)(ζ) = ω, it follows from Lemma

7.33 in [8], together with the Julia-Carathéodory theorem, that |(τn ◦ ϕ)′(ζ))| > 1.

Therefore

1 < |(τn)′(ϕ(ζ)) · ϕ′(ζ)| = |(τn)′(ω) · ϕ′(ζ)| = |ϕ′(ζ)|.

Since ϕ is univalent on a neighborhood of the closed unit disk, Shapiro’s essential

norm formula [15] yields

‖Cϕ‖2e = max
{
|ϕ′(w)|−1 : |w| = |ϕ(w)| = 1

}
= |ϕ′(ζ)|−1

< 1,

as we had hoped to show. ¤

Since ‖Cϕ‖ ≥ 1, Proposition 2.2 dictates that Cϕ : H2 → H2 attains its norm on

an element of H2; that is, ‖Cϕ‖2 is an eigenvalue of C∗ϕCϕ : H2 → H2. Proposition

2.3 guarantees that any corresponding eigenfunction must belong to KW . In other

words, ‖Cϕ‖2 is the largest eigenvalue of C∗ϕCϕ : KW → KW , meaning that it is

the largest zero of the polynomial p. Hence we have proved the following result:

Theorem 5.5. Let ϕ : D→ D be a linear fractional map, with ϕ(z) 6= az. Suppose

that τn(ϕ(0)) = 0 for some integer n ≥ 0; then ‖Cϕ‖2 is the largest zero of the
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polynomial p in equation (5.2), and the elements on which Cϕ attains its norm are

linear combinations of the kernel functions
{
Kτj(ϕ(0))

}n

j=0
.

Whenever n ≥ 1, Theorem 4.4 dictates that Sϕ < ‖Cϕ‖. Assuming that we can

find examples of such ϕ, this would appear to be the first case of a composition

operator whose norm we can calculate, for which the norm is not given by the

action of Cϕ on the normalized reproducing kernel functions of H2.

6. The eigenfunctions of C∗ϕCϕ

Having determined a particular eigenvalue λ of C∗ϕCϕ : KW → KW , it is possible

to find the corresponding eigenfunctions. In particular, considering Theorem 5.5, we

can identify the functions on which the operator Cϕ attains its norm. Let λ be such

an eigenvalue and g be its unique eigenfunction in KW with g(0) = g(τn(ϕ(0))) = 1.

We write

g(z) =
n∑

i=0

αi

1− τi(ϕ(0))z
,

where we hope to determine the coefficients αi. For any index 0 ≤ j ≤ n − 1, we

may appeal to Proposition 5.1 to find g(τj(ϕ(0))) explicitly in terms of λ:

g(τj(ϕ(0))) =
λj+1 −∑j−1

k=0 χ(τk(ϕ(0)))
[∏k−1

m=0 ψ(τm(ϕ(0)))
]
λj−k

∏j−1
m=0 ψ(τm(ϕ(0)))

.

Therefore we obtain the matrix equation

[
1

1− τi(ϕ(0))τj(ϕ(0))

]

0≤j,i≤n

[αi]0≤i≤n = [g(τj(ϕ(0)))]0≤j≤n .

The (n+1)×(n+1) matrix is simply the Gram matrix of the vectors
{
Kτi(ϕ(0))

}n

i=0
,

whose determinant is positive since the kernel functions are linearly independent

(see [11], p. 595). Hence we can use Cramer’s rule to solve explicitly for the

coefficients.

For example, take n = 1. Then




1
1−|ϕ(0)|2 1

1 1





 α0

α1


 =


 g(ϕ(0))

g(0)


 =


 λ

1


 ,
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so

α0 =

∣∣∣∣∣∣
λ 1

1 1

∣∣∣∣∣∣
∣∣∣∣∣∣

1
1−|ϕ(0)|2 1

1 1

∣∣∣∣∣∣

=
λ− 1
1

1−|ϕ(0)|2 − 1
and α1 =

∣∣∣∣∣∣

1
1−|ϕ(0)|2 λ

1 1

∣∣∣∣∣∣
∣∣∣∣∣∣

1
1−|ϕ(0)|2 1

1 1

∣∣∣∣∣∣

=
1

1−|ϕ(0)|2 − λ

1
1−|ϕ(0)|2 − 1

.

7. Examples

It is not difficult to find examples of linear fractional ϕ : D→ D with τ(ϕ(0)) = 0.

In terms of the coefficients of ϕ, this condition is equivalent to

|d|2 − |b|2 =
a

b
(cd− ab) .

In this case, considering the polynomial p in equation (5.2), we see that any eigen-

value λ of C∗ϕCϕ : KW → KW has the form

λ =
χ(ϕ(0))±

√
χ(ϕ(0))2 + 4ψ(ϕ(0))

2
=

acd
b ±

√(
acd
b

)2 − 4
(
ad− bc

)
ad

2
(
|d|2 − |b|2

) .

In particular, ‖Cϕ‖2 is the larger of these two values. For example, take

ϕ(z) =
16z + 8
19z + 32

.

Since ‖ϕ‖∞ < 1, the operator Cϕ is compact. Observe that τ(ϕ(0)) = 0, which

means that

‖Cϕ‖2 =
19 +

√
181

30
≈ 1.081787468.

We now turn our attention to a larger class of examples. Let n be a positive

integer and r a real number greater than n. Define

ϕ(z) =
rz − n

−(n + 1)z + (r + 1)
.

It is easy to show that ϕ is a self-map of D and that ∂ϕ(D)∩ ∂D = {1}. Note that

‖Cϕ‖2e = |ϕ′(1)|−1 =
(r − n)2

r(r + 1)− n(n + 1)
=

r − n

r + n + 1
.

A straightforward induction argument shows that each iterate τj has the form

τj(z) =
(r + n− j + 1) z + j

−jz + (r + n + j + 1)
.
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Consequently

τj(ϕ(0)) =
(r + n− j + 1)

(
− n

r+1

)
+ j

−j
(
− n

r+1

)
+ (r + n + j + 1)

=
j − n

r + j + 1
,

from which we see that τn(ϕ(0)) = 0. Observe that

ψ(τj(ϕ(0))) =
(r (r + 1)− n (n + 1))

(
j−n

r+j+1

)
(
r
(

j−n
r+j+1

)
+ n + 1

)(
n

(
j−n

r+j+1

)
+ r + 1

)

=
(r − n) (j − n) (r + j + 1)

(j + 1) (r + n + 1) (r + j − n + 1)

and

χ(τj(ϕ(0))) =
n + 1

r
(

j−n
r+j+1

)
+ n + 1

=
(n + 1) (r + j + 1)
(j + 1) (r + n + 1)

.

Hence the characteristic polynomial for C∗ϕCϕ : KW → KW may be written

p(λ) = λn+1−
n∑

k=0

(n + 1) (r + k + 1)
(k + 1) (r + n + 1)

[
k−1∏
m=0

(r − n) (m− n) (r + m + 1)
(m + 1) (r + n + 1) (r + m− n + 1)

]
λn−k,

and ‖Cϕ‖2 is the largest zero of this polynomial.

In particular, if n = 1 then

‖Cϕ‖2 =
r + 1
r + 2

+
1

r + 2

√
2(r + 1)

r
.

For n = 2, we solve the resulting cubic equation to obtain

‖Cϕ‖2 =
r + 1
r + 3

+
2

r + 3
3

√
3 (r + 1)
r (r − 1)

Re


 3

√
(r + 4) + i (r − 2)

√
2(r + 2)
r − 1


 ,

where we take the principal branch of the cube root function. For example, if

ϕ(z) =
4z − 2
−3z + 5

then

‖Cϕ‖2 =
5
7

+
2Re 3

√
10 + 5i

7
=

5
7

+
2
√

5
7

cos

(
arctan

(
1
2

)

3

)
≈ 1.345547525.
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